Растеж и минерален състав на тютюн Виржиния в отговор на минерално торене и биостимуланти
Радка Божинова, Йовко Дюлгерски, Виолета Николова, Николай Николов
Abstract: Проучено е влиянието на минерално торене и на два биостимуланта (микробиален инокулант Mycoplant® и протеинов хидролизат Trainer®) върху растежа и минералния статус на тютюн Виржиния. Изследването е проведено при условия на полски и съдов експеримент върху Хумусно-карбонатна почва.
Установено е, че разсадът от конвенционалната технология, при която се внася оборски тор и минерален азотен тор, e с най-голямо тегло и най-висока концентрация на N и Ca в биомасата. Биостимулантите също имат положителен ефект върху теглото на разсада и съдържанието на макро- и микроелементи. Микробиалният продукт повишава свежото и сухото тегло на разсада с 16,8% - 22,5% спрямо самостоятелното торене с оборски тор, а протеиновият хидролизат Trainer с 8% - 12%. Микробиалният инокулант, съдържащ АМ гъби, увеличава концентрацията на N в разсада с 8% спрямо варианта с оборски тор, на P – с 9%, а на Mg – с 13%. Концентрациите на Fе, Mn, Zn и Cu нарастват също от неговата употреба. Увеличението на азота в разсада от протеиновия хидролизат Trainer е с 11%, а на магнезия – с 4%.
Площта и теглото на листата на тютюн Виржиния от съдовия опит са във висока зависимост от торенето с комбиниран тор. Биопродуктите Mycoplant и Trainer имат по-слаб положителен ефект върху тези показатели. Минералното торене с NPK тор увеличава доказано концентрацията на N, P и K в листата на тютюна. Биостимулантите също подобряват усвояването на основни хранителни елементи от тютюневите растения. Микробиалният инокулант увеличава доказано концентрацията на Fe в листата на тютюн Виржиния – с 25,5% спрямо неторения вариант, а протеиновият хидролизат Trainer - на N (+14,3%).
Keywords: арбускуларни микоризни гъби; растежни показатели; макроелементи; микроелементи; протеинов хидролизат; тютюн Виржиния
Citation: Bozhinova, R., Dyulgerski, Y., Nikolova, V., & Nikolov, N. (2024). Growth and mineral composition of Virginia tobacco in response to mineral fertilization and biostimulants. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 58(3), 10-22 (Bg).
References: (click to open/close) | Begum, N., Akhtar, K., Ahanger, M. A., Iqbal, M., Wang, P., Mustafa, N. S., & Zhang, L. (2021). Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environmental Science and Pollution Research, 28, 45276-45295. Bozhinova, R., & Hristeva, Ts. (2022). Impact of the combined use of chemical fertilizer and microbial inoculants on soil properties, yield and quality of Burley tobacco. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 56(1), 17-33. Campbell, C. (2000). Reference Sufficiency Ranges Field Crops, Tobacco, Flue-cured. www.ncagr.com/agronomi/saaesd/fluecure.htm (last accessed 30.0.2024). Caris, C., Hördt, W., Hawkins, H. J., Römheld, V., & George, E. (1998). Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8, 35-39. Cimen, I., Pirinc, V., Doran, I., & Turgay, B. (2010). Effect of soil solarization and arbuscular mycorrhizal fungus (Glomus intraradices) on yield and blossom-end rot of tomato. International Journal of Agriculture & Biology, 12, 551-555. Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in plant science, 5, 448. De Santis, M. A., Giuliani, M. M., Flagella, Z., Pellegrino, E., & Ercoli, L. (2022). Effect of arbuscular mycorrhizal fungal seed coating on grain protein and mineral composition of old and modern bread wheat genotypes. Agronomy, 12(10), 2418. Di Mola, I., Cozzolino, E., Ottaiano, L., Nocerino, S., Rouphael, Y., Colla, G., El-Nakhel, C., & Mori, M. (2020). Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy, 10(2), 278. Douds Jr, D. D., Nagahashi, G., Reider, C., & Hepperly, P. R. (2007). Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biological agriculture & horticulture, 25(1), 67-78. Elliott, A. J., Daniell, T. J., Cameron, D. D., & Field, K. J. (2021). A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquirednutrients. Plants, People, Planet, 3(5), 588-599. Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237-244. Ertani, A., Nardi, S., Francioso, O., Sanchez-Cortes, S., Foggia, M. D., & Schiavon, M. (2019). Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) plants. Frontiers in plant science, 10, 954. Farzaneh, M., Vierheilig, H., Lössl, A. & Kaul, H. P. (2011). Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant, Soil and Environment, 57(10), 465-470. Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25, 359-376. ISO 14870:2001 „ Soil quality - extraction of trace elements by buffered DTPA solution”. Kumari, M., Swarupa, P., Kesari, K. K., & Kumar, A. (2022). Microbial inoculants as plant biostimulants: A review on risk status. Life, 13(1), 12. Liu, A., Hamel, C., Hamilton, R., Ma, B., & Smith, D. (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9, 331-336. Mitova, I. (2020). Effect of Nitrogen Form and Arbuscular Mycorrhizal Mushrooms on Salad Development and Quality. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 54(3), 41-51 (Bg). Mitra, D., Uniyal, N., Panneerselvam, P., Senapati, A., Ganeshamurthy, A.N., Jain, D., & Kumar, V. (2019). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences & Applied Sciences, 1(1), 1-10. Mitreva, N., & Apostolova, E. (1986a). On the leaf diagnostics of Virginia tobacco. Bulgarian tobacco, 5, 28-31 (Bg). Mitreva, N., & Apostolova, E. (1986b). Virginia tobacco uptake, utilization and distribution of potassium and calcium at different nitrogen levels. Soil science, agrochemistry and plant protection, 21(1), 25-34 (Bg). Moustakas, N. K., & Ntzanis, H. (1998). Estimating flue-cured tobacco leaf area from linear measurements, under Mediterranean conditions. Agricoltura Mediterranea, 128(3), 226-231. O’Hallorans, J. M., Lindemann, W. C., & Steiner, R. (2004). Iron Characterization in Manure Amended Soils. Communications in Soil Science and Plant Analysis, 35(15&16), 2345-2356. Rouphael, Y., Cardarelli, M., Di Mattia, E., Tullio, M., Rea, E., & Colla, G. (2010). Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biology and Fertility of Soils, 46, 499-509. Rouphael, Y., Carillo, P., Cristofano, F., Cardarelli, M., & Colla, G. (2021). Effects of vegetal-versus animal-derived protein hydrolysate on sweet basil morphophysiological and metabolic traits. Scientia Horticulturae, 284, 110123 Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., & Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91-108. Roussis, I., Beslemes, D., Kosma, C., Triantafyllidis, V., Zotos, A., Tigka, E., Mavroeidis, A., Karydogianni, S., Kouneli, V., Travlos, I., & Kakabouki, I. (2022). The influence of arbuscular mycorrhizal fungus Rhizophagus irregularis on the growth and quality of processing tomato (Lycopersicon esculentum Mill.) seedlings. Sustainability, 14(15), 9001. Smith, S.E., & Read, D.J. (2010). Mycorrhizal Symbiosis. Academic Press: Cambridge, MA, USA. Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., & Andreotti, C. (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9), 483. Sun, W., Shahrajabian, M. H., Kuang, Y., & Wang, N. (2024). Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants, 13(2), 210. Tsvetkov, I., Georgieva, L., Tsvetkova, D., Michailova, V., & Georgiev, D. (2017). Benefits of the Micorrhizal Fungi Glomus spp. for Grapevine Nutrient Uptake, Biocontrol and Microbial Ecology. Journal of Mountain Agriculture on the Balkans, 20(1), 227-250. Wang, C., Li, X., Zhou, J., Wang, G., & Dong, Y. (2008). Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Communications in Soil Science and Plant Analysis, 39(3-4), 499-509. Zaprjanova, P., & Hristozova, G. (2018). Microelement content of oriental tobacco varieties grown under the same agro-ecological conditions. Agricultural Sciences/Agrarni Nauki, 10(23), 41-47. Ziane, H., Hamza, N., & Meddad-Hamza, A. (2021). Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. Journal of the Saudi Society of Agricultural Sciences, 20(7), 454-458. |
|
| Date published: 2024-09-30
Download full text