Bioremediation techniques for the management of agricultural soils contamination by oil spilling
Suleiman Usman
Abstract: Soil and land contamination as a result of diverse industrial activities, particularly oil spilling, pesticides and disinfectants, has affected quality of life, ecosystems and overall agricultural activities. Bioremediation is a scientific method in which biological microorganisms are used to remove contaminants via metabolic processes. This procedure has the advantage of providing the transformation and/or even removal of organic and inorganic pollutants, even at low absorption. This paper specifically focused on addressing the theories and models of some techniques involved in the processes of bioremediation. These techniques can be divided into two types: in situ and ex situ. The in situ techniques are defined as those that are applied to soil and groundwater at the site with minimal disturbance, whereas the ex situ techniques are those models that are applied to soil and groundwater at the site that have been removed from the site via excavation (soil) or pumping (water). It is believed that successful treatment of contaminated environments, particularly those polluted by oil spilling and dripping, requires an integrated and well-planned effort. This treatment will help improve the environmental soil quality for diverse agricultural activities and ensure better lifestyles among the rural communities where the activities of oil industries are present.
Keywords: bioremediation; bioremediation techniques; oil spilling; soil contamination
Citation: Usman, S. (2024). Bioremediation techniques for the management of agricultural soils
contamination by oil spilling. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 58(2), 25-36.
References: (click to open/close) | Azubuike C.C, Chikere, C.B. & Okpokwasili, G.C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol., 32(11), 180. doi: 10.1007/s11274-016-2137-x Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology. 74, 6-7. doi:10.1016/S0960-8524(99)00144-3. Cairney, T. (1993). Contaminated Land. Blackie, London. Cerniglia, E. & Pritchard, P.H. (1996). Bioremediation of Environments Contaminated by Polycyclic Aromatic Hydrocarbons. In Bioremediation: Principles and Applications, pp. 125-194, Cambridge University Press, Cambridge. Chen, Q., Bao, B., Li, Y., Liu, M., Zhu, B., Mu, J. & Chen Z. (2020). Effects of marine oil pollution on microbial diversity in coastal waters and stimulating indigenous microorganism bioremediation with nutrients. Regional Studies in Marine Science. 39, 101395. doi:10.1016/j.rsma.2020.101395. Chen, R & Zhou, Y. (2021). Measure microbial activity driven oxygen transfer in membrane aerated biofilm reactor from supply side. Environmental Research, 195, 110845. doi:10.1016/j.envres.2021.110845. Chikere, C.B., Chikere, B.O. & Okpokwasili, G.C. (2012). Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. Biotech. 2(1), 53-66. Coulon, F., Awadi, A.M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P., Semple, K.T. & Paton, G.I. (2010). When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158(10), 3032-3040. Davison, J. (2005). Risk mitigation of genetically modified bacteria and plants designed for bioremediation. Journal of Industrial Microbiology and Biotechnology. 32(11–12), 639-50. doi:10.1007/s10295-005-0242-1. DESA (2013). World Economic and Social Survey 2013: Sustainable Development Challenges. Department of Economic and Social Affairs (DESA) of the United Nations Secretariat. E/2013/50/Rev. 1 ST/ESA/344. Erickson, L.E., Kulakow, P.A., & Davis, L.C. (2000). Phytoremediation of petroleum contaminated soil. In Vadose zone science and technology solutions. BB Looney, RW Falta (Eds.), Battelle Press, Columbus, New York, United States, 2, 1234-1237. FAO (1995). Land and environmental degradation and desertification in Africa. The FAO Corporative Documents Repository. FAO, Rome, Italy. 22 García, F.J., Escolano, O., García, S., Babín, M. & Fernández, M.D. (2010). Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. Journal of Hazardous Materials. 183(1–3), 806-13. doi:10.1016/j.jhazmat.2010.07.098. Gidarakos, E. & Aivalioti, M. (2007). Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. J. Hazard. Mat., 149, 574-581. Hlihor, R.M., Gavrilescu, M., Tavares, T., Favier, L. & Olivieri G. (2017). Bioremediation: An Overview on Current Practices, Advances, and New Perspectives in Environmental Pollution Treatment, BioMed research international, https://doi.org/10.1155/2017/6327610. Johnson, P.C., Johnson, R.L., Bruce, C.L. & Leeson, A. (2001). Advances in In Situ Air Sparging/Biosparging. Bioremediation Journal, 5(4), 251-266. doi:10.1080/20018891079311. Juwarkar, A.A., Singh, S.K. & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation”. Reviews in Environmental Science and Bio/Technology, 9(3), 215-88. doi:10.1007/s11157-010-9215-6. Kalantary, R.R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F.R., Jorfi, S. & Ja’fari, M. (2014). Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. Journal of Environmental Health Science and Engineering., 12(1), 143. doi:10.1186/s40201-014-0143-1. Kapahi, M. & Sachdeva, S. (2019). Bioremediation Options for Heavy Metal Pollution. Journal of Health and Pollution, 9(24), 191203. doi:10.5696/2156-9614-9.24.191203. King, R.B, Long,G.M. & Sheldon, J.K. (1997). Practical Environmental Bioremediation: The Field Guide, 2nd ed., Lewis, Boca Raton, FL. Kingston, P. (2002). Long-term environmental impact of oil spills. Spill Sci. Technol. Bull, 7, 53-61. Kittel, J.A., Hinchee, R.E., Hoeppel, R. & Miller, R. (1994). Bioslurping – Vacuum-enhanced free-product recovery coupled with bioventing: A case study. http://info.ngwa.org/gwol/pdf/940160817.pdf (last accessed 10.04. 2013). Ledin, M. (2000). Accumulation of metals by microorganisms – Processes and importance for soil systems. Earth Science Review, 51, 1-31. Lee, D.W., Lee, H., Lee, A.H., Kwon, B.O., Khim, J.S. & Yim, U.H. (2018). Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environmental Pollution, 234, 503-512. doi:10.1016/j.envpol.2017.11.097. Lovley, D.R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews. Microbiology, 1(1), 35-44. doi:10.1038/nrmicro731. Macaulay, B.M & Rees, D. (2014). Bioremediation of oil spills: A review of challenges for research advancement. Annals of Environmental Science, 8, 9-37. Marchetto, F., Roverso, M., Righetti, D., Bogialli, S., Filippini, F., Bergantino, E. & Sforza, E. (2021). Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life, 11(12), 1300. doi: 10.3390/life11121300 23 Menn, F.M., Easter, J.P. & Sayler, G.S. (2001). Genetically Engineered Microorganisms and Bioremediation. doi:10.1002/9783527620999.ch21m. Misra, R., Roy, R. & Hiraoka, H. (2003). On-farm composting methods. Food and Agriculture Organization of the United Nations (FAO). Mora, R.H., Macbeth, T.W., MacHarg, T., Gundarlahalli, J., Holbrook, H. & Schiff, P. (2008). Enhanced bioremediation using whey powder for a trichloroethene plume in a high-sulfate, fractured granitic aquifer. Remediation Journal, 18(3), 7-30. doi:10.1002/rem.20168. Mrozik, A. & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res., 165, 363-375. Norris, R.E. Hinchee, R. Brown, P.L. McCarty, L. & Semprini, J.T. (1993). In Situ Bioremediation: When Does It Work?, National Academy Press, Washington, DC. 4. R. D. Norris, R. (1993). Handbook of Bioremediation. CRC Press. Odukkathil, G. & Vasudevan, N. (2013). Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Bio/Technology. 12(4), 421-444. doi:10.1007/s11157-013-9320-4. Paniagua-Michel, J. & Fathepure B.Z. (2018). Microbial Consortia and Biodegradation of Petroleum Hydrocarbons in Marine Environments. In Kumar V, Kumar M, Prasad R (eds.). Microbial Action on Hydrocarbons. Singapore: Springer Singapore. pp. 1-20. doi:10.1007/978-981-13-1840-5_1. Prasad, S., Kannojiya, S., Kumar, S., Yadav, K.K., Kundu, M. & Rakshit, A. (2021). Integrative Approaches for Understanding and Designing Strategies of Bioremediation. In Rakshit A, Parihar M, Sarkar B, Singh HB, Fraceto LF (eds.). Bioremediation Science: From Theory to Practice. CRC Press. Raskin, I., Kumar, P.N., Dushenkov, S. & Salt, D.E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5(3), 285-290. https://doi.org/10.1016/0958-1669(94)90030-2. Ripp, S., Nivens, D.E., Ahn, Y., Werner, C., Jarrell, J., Easter, J.P. & et al. (2000). Controlled Field Release of a Bioluminescent Genetically Engineered Microorganism for Bioremediation Process Monitoring and Control. Environmental Science & Technology. 34(5), 846-53. doi:10.1021/es9908319. Sağlam, N.G., Rachid, N.A. & Güngör, N.D. (2024). Chapter 7 - Secondary metabolites and biological compounds of actinomycetes and their applications. Bacterial Secondary Metabolites In: Synthesis and Applications in Agroecosystem Nanobiotechnology for Plant Protection, 123-145. https://doi.org/10.1016/B978-0-323-95251-4.00013-2 Sayler, G.S. & Ripp, S. (2000). Field applications of genetically engineered microorganisms for bioremediation processes”. Current Opinion in Biotechnology. 11(3), 286-289. doi:10.1016/S0958-1669(00)00097-5. Shanker, R., Purohit, H.J. & Khanna, P. (1998) Bioremediation for Hazardous Waste Management: The Indian Scenario. Bioremediation Technologies: Principles and Practice, 81-96. Slonczewski, J.L. (2009). Stress Responses: pH. In Schaechter M (ed.). Encyclopedia of microbiology, 477-484. doi:10.1016/B978-012373944-5.00100-0. Strauss, R. (2009). Green guides – Compost: How to use, How to make and Everyday tips. Flame Tree Publishing, UK. US-EPA (1984). Handbook on In Situ Treatment of Hazardous Waste Contaminated Soils, EPA/540/2- 90/002. US-EPA (2013). Introduction to In Situ Bioremediation of Groundwater (PDF). US Environmental Protection Agency. Usman, S. (2013). Understanding soils: Environement and Properties under Agricultural Production. PublishAmerica, Baltimore, USA. Usman, S. (2018) Technology of Bioorganic Fertilizer Production: Treasures for North-West Nigeria. LAMBERT Academic Publishing Ltd. Germany. Usman, S. (2020). Pesticide in Soil and Plant: An overview. ABU Publishing Ltd., Zaria, Kaduna State, Nigeria. Usman, S., Jayeoba, J.O. & Amana S.M. (2024). Pesticides and soil environment: An age-linked concept. Bulgarian Journal of Soil Science, 9(1), 83-103. Varjani, S.J. & Upasani V.N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation. 120, 71-83. doi:10.1016/j.ibiod.2017.02.006. Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry. 73(7), 1163-72. doi:10.1351/pac200173071163. von Fahnestock, F.M., Wickramanayake, G.B., Kratzke, K.J. and Major, W.R. (1998). Biopile Design, Operation, and Maintenance Handbook for Treating Hydrocarbon Contaminated Soil, Battelle Press, Columbus, OH. Ward, O.P., Singh, A., Van Hamme, J.D. & Voordouw, G. (2009). Petroleum Microbiology. Encyclopedia of Microbiology (3rd edn.), 443-456. https://doi.org/10.1016/B978-012373944-5.00171-1. Wexler, P. (2014). Encyclopedia of toxicology (3rd ed.). San Diego, Ca: Academic Press Inc. p. 489. Wilson, D.H., Kampbell, M., Reinhard, E.J., Bou36 wer, P.C., Borden, T.M., Vogel, J.M. & Thomas, C.H. (1993). Ward. Handbook of Bioremediation. Lewis, Boca Raton, FL. Ying, G.G. (2018). Chapter 14: Remediation and Mitigation Strategies. Integrated Analytical Approaches for Pesticide Management. Academic Press. pp. 207–217. doi:10.1016/b978-0-12-816155-5.00014-2. |
|
| Date published: 2024-06-25
Download full text