Биологична активност на 20 изолата на ентомопатогенни гъби от род Beauveria
Мариана Петкова
, Величка Спасова-Апостолова
Abstract: Ензими като хитиназа, протеиназа и липаза участват в разграждането на кутикулата на насекомите. От отделянето на тези ензими от различни микроорганизми зависи до голяма степен тяхната патогенност, вирулентност и специфичност. По този начин, нивото на ензимна активност може да представлява диагностичен инструмент за избор на ефективен агент за биологичен контрол. В настоящето изследване се използваха 20 различни изолата на ентомопатогенни гъби от род Beauveria и се определи тяхната липолитична, хитинолитична и протеолитична активност. Ензимните активности се оценяват качествено според наличието на зона на просветляване вследствие на тяхното разграждащо действие и количествено се изразява като съотношение между зоната на ензимна активност и диаметъра на колонията. Проведен e и PCR анализ с ген-специфични праймери локализирани в секвенцията на Beauveria bassiana хитиназа - chitinase (chit1) ген (АСС AY145440). При по-голямата част от изследваните изолати на род Beauveria се установяват амплификации на фрагменти с очаквана дължина 1225 bp Изследваните изолати от род Beauveria се различават по своите липолитични, протеолитични и хитин-разграждащи способности. Най-висока обща активност се установява при четири от тях 336, 340, 487 и 501 и може да бъде свързана с тяхната вирулентност. Информацията за ензимните активности на проучените изолати ще бъде необходима за разработването на ефикасен препарат за биологичен контрол на неприятелите.
Keywords: Beauveria; биологичен контрол; ензимната активност
Citation: Petkova, M., & Spasova-Apostolova, V. (2024). Biological activities of 20 isolates of entomopathogenic fungi of the genus Beauveria. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 58(1), 27-38 (Bg).
References: (click to open/close) | Allegrucci, N., Velazquez, M. S., Russo, M. L., Pérez, M. E., & Scorsetti, A. C. (2017). Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Bidochka, M. J., & Khachatourians, G. G. (1987). Purification and properties of an extracellular protease produced by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 53(7), 1679-1684. Deba, L., Rajesha, T., Tombisanaa, R. K., & Majumdera, D. (2017). Antagonistic potential of Beauveria sp. against phytopathogens. Bull Environ Pharmacol Life Sci, 6(3), 207-212. Dhar, P. & Kaur, G. (2010). Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme from Beauveria bassiana isolates. African Journal of Biotechnology, 9 (47), 8092-8099. Dhawan, M., & Joshi, N. (2017). Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Brazilian journal of microbiology, 48(3), 522-529. Fan, Y., Fang, W., Guo, S., Pei, X., Zhang, Y., Xiao,Y., Li, D., Jin, K., Bidochka, M.J & Pei, Y. (2007). Increased Insect Virulence in Beauveria bassiana Strains Overexpressing an Engineered Chitinase. Appl Environ Microbiol., 73(1), 295–302. Fan, J., Xie, Y., Xue, J., & Liu, R. (2013). The effect of Beauveria brongniartii and its secondary me-tabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis. Journal of Insect Science, 13(1), 44. Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M. J., Leger, R. J. S., & Pei, Y. (2009). Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102(2), 155-159. Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y. & Pei, Y. (2005). Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application to Improve Fungal Strain Virulence. Appl Environ Microbiol, 71(1), 363–370 Goble, T. A., Rehner, S. A., Long, S. J., Gardescu, S., & Hajek, A. E. (2014). Comparing virulence of North American Beauveria brongniartii and commercial pathogenic fungi against Asian longhorned beetles. Biological control, 72, 91-97. Hussein, K.A., Abdel-Rahman, M.A.A., Abdel-Mallek, A.Y., El-Maragy, S.S. & Joo, H.J. (2012). Pathogenicity of Beauveria bassiana and Metarhizium anisopliae against Galleria mellonella . Phytoparasitica, 40, 117–126. Jaber, L. R., & Salem, N. M. (2014). Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol science and technology, 24(10), 1096-1109. Jia, Z., Sun, Y., Yuan, L., Tian, Q., & Luo, K. (2010). The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnology letters, 32, 1325-1332. Konstantopoulou, M. A., & Mazomenos, B. E. (2005). Evaluation of Beauveria bassiana and B. brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae and Ceratitis capitata. BioControl, 50(2), 293-305. Natelson, S., Natelson, E. A., Natelson, S., & Natelson, E. A. (1980). Transferrin: Iron Metabolism. Principles of Applied Clinical Chemistry: Chemical Background and Medical Applications. Volume 3: Plasma Proteins in Nutrition and Transport, 287-328. Pelizza, S.A, Mariottini, Y, Russo L.M., Vianna, M.F., Scorsetti, A.C., & Lange, C.E. (2017a). Beauveria bassiana (Ascomycota: Hypocreales) Introduced as an Endophyte in Corn Plants and Its Effects on Consumption, Reproductive Capacity, and Food Preference of Dichroplus maculipennis (Orthoptera: Acrididae: Melanoplinae). J Insect Sci, 17(2), 53. doi: 10.1093/jisesa/iex024. PMID: 28423416; PMCID: PMC5416762. Pelizza, A.S., Medina, E.H., Ferreri, A.N., Eliades, A.L., Pocco, E.M., Stenglein, S. and Lange, E.C. (2017). Virulence and enzymatic activity of three new isolates of Beauveria bassiana (Ascomycota: Hypocreales) from the South American locust Schistocerca cancellata (Orthoptera: Acrididae). Journal of King Saud University – Science, 32 (1). DOI: 10.1016/j.jksus.2017.11.006. Petrisor, C., & Stoian, G. (2017). The role of hydrolytic enzymes produced by entomopathogenic fungi in pathogenesis of insects mini review. Romanian J Plant Prot, 10, 66-72. Robert, A., & K. Messing-Al-Aidroos. (1985). Acid production by Metarhizium anisopliae: effects on virulence against mosquitose and on detection of in vitro amylase, protease, and lipase activity. J. Invertebr. Pathol., 45, 9-15. Rondot, Y., & Reineke, A. (2018). Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control, 116, 82-89. Sahab, A. F. (2012). Antimicrobial efficacy of secondary metabolites of Beauveria bassiana against selected bacteria and phytopathogenic fungi. J. Appl. Sci. Res, 8(3), 1441-1444. Sugahara, V. H., & Varéa, G. D. S. (2014). Immobilization of Beauveria bassiana lipase on silica gel by physical adsorption. Brazilian Archives of Biology and Technology, 57, 842-850. Suresh, P. V., & Chandrasekaran, M. (1998). Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World Journal of Microbiology and Biotechnology, 14, 655-660. Tajuddin, N. S. A., Ali, S. R. A., Bakeri, S. A., & Kamaruzzaman, N. E. (2010). Effect of Beauveria brongniartii and B. bassiana on oil palm bagworm, Pteroma pendula (Joannis). Journal of Oil Palm Research, 22(1), 729-735. Vega, F. E., Meyling, N. V., Luangsa-ard, J. J., & Blackwell, M. (2012). Fungal entomopathogens. Insect pathology, 171-220. Wang, Z., Pan, H., Huang, J. & Yu, X. (2020). The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. Pest Manag Sci., 76(8), 2589-2600. Wekesa, V. W., Maniania, N. K., Knapp, M., & Boga, H. I. (2005). Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi. Experimental & applied acarology, 36, 41-50. |
|
| Date published: 2024-03-27
Download full text