Liquid organic fertilizers from rabbit wastes under different feeding regimes improve soil properties, growth, yield and nutrient uptake in maize
Musibau Oyeleke Azeez

, Festus Adewale Oladipupo, Francis Tope Olatoberu, Akinloye Jimoh Farinde, Waheed Olalere Oladepo
Abstract: The present study aimed at evaluating the effects of liquid organic fertilizers (LOF) from rabbit wastes under different feeding regimes on soil properties, growth, yield and nutrient uptake in maize. The study utilized urine and faeces collected from rabbits fed with two different feeding types (100% forage and 50% Concentrate + 50% Forage). Soil samples were collected before and after the field experiment. The maize growth parameters: chlorophyll index, plant height, number of leaves, stem girth, and leaf area index, were collected fortnightly, whereas dry matter weight, dry matter yield, grain yield, NPK uptake in maize plant, and selected soil properties were determined at the end of the field experiment. The results showed significant positive effects of LOF application on the maize growth parameters. Furthermore, maize grain yield and nutrient uptake were positively influenced in all the LOF treated plots and did not significantly different from NPK treated plot. For instance, though NPK had the highest grain yield of 6.58 ton.ha-1, but not significantly different from UfFfRN treated plot (urine + faeces from forage fed rabbits + banana root + Neem bark) with grain yield of 6.22 ton.ha-1. Selected soil properties such as pH, available P, exchangeable K increased in all LOF treated plots, whereas lower total N and C were recorded, which was attributed to high plant N uptake and high mineralization of organic matter occasioned by improved soil conditions due to LOF applications to soil. It was concluded that the LOF produced from rabbit wastes can serve as a good substitute to chemical fertilizers such as NPK for a viable maize production.
Keywords: forage; liquid organic fertilizer; maize; NPK; rabbit wastes
Citation: Azeez, M.O., Oladipupo, F.A., Olatoberu, F. T., Farinde, A. J., & Oladepo, W.O. (2025).
Liquid organic fertilizers from rabbit wastes under different feeding regimes improve soil properties, growth, yield and nutrient uptake in maize. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 59(2), 16-31.
References: (click to open/close) | Abdi, A. H., Mohamed, A. A. & Mohamed, F. H. (2024). Enhancing food security in sub-Saharan Africa: Investigating the role of environmental degradation, food prices, and institutional quality. Journal of Agriculture and Food Research, 17, 101241, https://doi.org/10.1016/j.jafr.2024.101241. Adepetu, J. A. (1990). Soil test data interpretation in soil testing programme. In: National Workshop on Soil Testing Service for Efficient Fertilizer Use in Nigeria. Moore Plantation, Ibadan. Adepetu, J. A., Adetunji, M. T. & Ige, D. V. (2014). Soil acidity and liming, In: Soil fertility and crop nutrition, Jumak Publishers, Ringroad, Ibadan, pp 106-115. Aizebeokhai, A. P., Okenwa, U. N., Oyeyemi, K. D., Kayode, O. T. & Adeyemi, G. A. (2018). Soil characterization using satellite remote sensing in southwestern Nigeria: Implications for precision agriculture. In: IOP Conference Series: Earth and Environmental Science, 173, 012027, doi: 10.1088/1755-1315/173/1/012027, https://iopscience.iop.org/article/10.1088/1755-1315/173/1/012027/pdf (last accessed 15.12.2025). AOAC (2005). Official Methods of Analysis 18th edn, Association of Official Analytical Chemists, Washington, DC, USA. Apeh, A. C., Apeh, C. C., Ukwuaba, S. I., Agbugba, I. K., Onyeaka, H. (2024). Exploring data sources and farmers’ perceptions regarding agrochemical use and food safety in Nigeria. JSFA Reports. 4(8), 304-315, https://doi.org/10.1002/jsf2.212. Azeez, M. O., Oladipupo, F. A., Farinde, A. J., & Oladepo, W. O. (2024). Evaluation of elemental composition and structural analyses of liquid organic fertilizers from rabbit wastes under different feeding regimes. African Journal of Agricultural Research, 20(12), 1013-1022. https://doi.org/10.5897/AJAR2024.16782. Baitilwake, M. A., De Bolle, S., Salomez, J., Mrema, J. P., De Neve, S. (2012). Effect of organic fertilizers on nitrate accumulation in vegetables and mineral nitrogen in tropical soils of Morogoro, Tanzania. Experimental Agriculture. 48(1), 111-126. https://doi.org/10.1017/S0014479711000810. Bouyoucos, G. J. (1962). Hydrometer methods improved for making particle size analysis of soils. Soil Science Society of America Proceeding, 26, 917-925. Bray, R. H. & Kurtz, L. T. (1945). Determination of total organic and available forms of P in soils. Soil Science, 59, 39-45. Bremner, J. M. (1996). Nitrogen-Total. In: Methods of Soil Analysis Part 3 Chemical Methods, Chap. 37, 1085-1121 (Eds. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., &. Bremner, J. M.), https://doi.org/10.2136/sssabookser5.3.c37. Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen-total, In: Methods of Soil Analysis. Part 3. Chemical Methods, Vol. 5 of Soil Science Society of America Book Series, Ed. By Sarks D.L. Soil Science Society of America./ American Society of Agronomy. Madison, WI, 1085-1112. Dimkpa, C., Adzawla, W., Pandey, R., Atakora, W. K., Kouame, A. K., Jemo M. & Bindraban P. S. (2023). Fertilizers for food and nutrition security in sub-Saharan Africa: An overview of soil health implication. Frontiers in Soil Science, 3, 1123931, https://doi: 10.3389/fsoil.2023.1123931. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V. & Linnemann, A. R. (2018). Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Global Food Security, 17, 48-56, https://doi.org/10.1016/j.gfs.2018.03.007. El-Ghamry, A., Mosa, A.A., Alshaal, T. & El-Ramady, H. (2018). Nanofertilizers vs. biofertilisers: New insights. Environment, Biodiversity and Soil Security, 2, 51-72. El-Mogy, M., Abdelaziz, S. M., Mahmoud, A.W. M. Elsayed, T. R., Abdel-Kader, N. H. & Mohamed, M. I. A. (2020). Comparative effects of different organic and inorganic fertilizers on soil fertility, plant growth, soil microbial community, and storage ability of lettuce. Agriculture (Poľnohospodárstvo), 66 (3), 87-107. Gee, G. W., & Or, D. (2002). 2.4 Particle-Size Analysis. In: Methods of Soil Analysis: Part 4 Physical Methods, SSSA Book Series. doi:10.2136/sssabookser5.4.c12. Indabo, S. S. & Abubakar, A. A. (2020). Effect of rabbit urine application rate as a bio-fertilizer on agro-morphological traits of UC82B tomato (Lycopersicon esculentum Mill) variety in Zaria, Nigeria. Dutse Journal of Pure and Applied Sciences, 6, 344-352. Jones, J. B. (1998). Soil Test Methods: Past, Present, and Future Use of Soil Extractants. Communications in Soil Science and Plant Analysis, 29, 1543-1552, https://doi.org/10.1080/00103629809370048. Kandpal, G. (2021). Review on impact of chemical fertilisers on environment. International Journal of Modern Agriculture, 10, 758-763. Kihara, J., Bolo, P., Kinyua, M., Rurinda, J. & Piikki, K. (2020). Micronutrient deficiencies in African soils and the human nutritional nexus: opportunities with staple crops. Environmental Geochemistry and Health, 42, 3015-3033, https://doi.org/10.1007/s10653-019-00499-w. Kuo, S. (1996). Phosphorus. In D. L. Sparks. (ed.) Methods of Soil Analysis: Part 3 - Chemical Methods. SSSA, Madison, WI. pp. 869-919. Lawrence, B. T. and Melgar, J. C. (2023). Organic matter amendments on nutrient and water status within subtropical peach orchards. Acta Horticulturae, 1375, 197-202, https://doi.org/10.17660/ActaHortic.2023.1375.26. Liu, Y., Lan, X., Hou, H., Ji, J., Liu, X., & Lv, Z. (2024). Multifaceted Ability of Organic Fertilizers to Improve Crop Productivity and Abiotic Stress Tolerance: Review and Perspectives. Agronomy, 14, 1141, https://doi.org/10.3390/agronomy14061141. Mamatha, B., Chandana, M., Guguloth, R., Pakala, S., Nayaki, M. & Chuncha, L. P. (2024). “Enhancing Soil Health and Fertility Management for Sustainable Agriculture: A Review”. Asian Journal of Soil Science and Plant Nutrition, 10(3), 182-190, https://doi.org/10.9734/ajsspn/2024/v10i3330. Martínez-Ortiz, M. A., Salinas-Moreno, Y., Ramírez-Díaz, J. L., Ledesma-Miramontes, A., & Alemán de la Torre, I. (2024). Challenges and Opportunities in the Specialization of Maize Cultivation. Agro Productividad, 82-92, https://doi.org/10.32854/agrop.v17i9.3037. Mmbaga, N., Ngongolo, K. & Materu, S.T. (2024). Potential of rabbit urine as fertilizer on growth and production of Brassica carinata L. Discover Agriculture 2, 99, https://doi.org/10.1007/s44279-024-00106-2. Mutai, P. A. (2020). The Potential Use of Rabbit Urine as a Bio Fertilizer Foliar Feed in Crop Production. Africa Environmental Review Journal, 4(1), 138-147. Nelson, D. M & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis Part 3 Chemical methods (Eds Sparks, D. L., Page, A. L., Helmke, P.A., & Loeppert, R. H.), SSSA Book Series 5, Madison, Wisconsin, USA, pp 61-1010. Okonji, C. J., Ajayi, E. O., Obisesan, O. I., Osundare, O. T. & Adetuyi, A. O. (2023). Effect of Rabbit Urine on Growth and Yield of Cucumber. Badeggi Journal of Agricultural Research and Environment, 05(01), 15-23. Peech, M. (1965). Hydrogen-Ion Activity. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, (Ed. Norman, A. G.), Agronomy Monographs. American Society of Agronomy, Inc. https://doi.org/10.2134/agronmonogr9.2.c9. Prajanti, S. D. W., Litaay, C., Widiatningrum, T., Amelia, D. R., & Daud, D. (2023). Application of Rabbit Urine and Manure Based Fertilizer on the Growth of Arabica and Robusta Coffee Seedlings. Biosaintifika: Journal of Biology and Biology Education, 15(3), 441-449. Rambaut, L.E., Vayssières, J., Versini, A., Salgado, P., Lecomte, P. & Tillard, E. (2022). 15-year fertilization increased soil organic carbon stock even in systems reputed to be saturated like permanent grassland on andosols. Geoderma, 425, 116025. R Core Team (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (last accessed 15.12.2025). Said, M. I., Asriany, A., Sirajuddin, N., Abustam, R., Rasyid, R. & Al-Tawaha, A.R.M. (2018). Evaluation of Liquid Organic Fertilizer from Rabbit’s Urine Waste fermented using Local Microorganisms as Decomposers. Iraqi Journal of Agricultural Science, 49(6), 990-1003. Saleem, M. & Moe, L. A. (2014). Multitrophic microbial interactions for eco and agro-biotechnological processes: Theory and practice. Trends Biotechnology, 32, 529-537. Sharma, B., Vaish, B., Singh, U.K., Singh, P. & Singh, R.P. (2019). Recycling of organic wastes in agriculture: An environmental perspective. International Journal of Environmental Research, 13, 409-429. Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role of maize in global food security. Food Security, 3(3), 307-327, https://doi.org/10.1007/s12571-011-0140-5. Singh, B. (2018). Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy, 8(4), 48, https://doi.org/10.3390/agronomy8040048. Sofyan, E. T., Sara, D. S. & Machfud, Y. (2021). The effect of organic and inorganic fertilizer applications on N, P-uptake, K-uptake and yield of sweet corn (Zea mays), 2019. In: IOP Conference Series: Earth and Environmental Science, 393, 012021, https://doi.org/10.1088/1755-1315/393/1/012021. Suleiman, R., Jimoh, I. A. & Aliyu, J. (2017). Assessment of soil physical and chemical properties under vegetable cultivation in Abuja Metropolitan Area, Nigeria. Zaria Geographer, 24, 89-99. Tan, F., Wang, Z., Zhouyang, S. Y., Li, H. L., Xie, Y. P., Wang, Y. P., Zheng, Y. M. & Li, Q. B. (2016). Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Boresource Technology, 221, 385-393. Thomas, G. W. (1982). Exchangeable cations In: Methods of Soil Analysis, (Eds Page, A.L., Miller, R.H., & Keeney, D.) 22nd Edition. Medison: America Society of Agronomy, pp. 57-164. Thomas, G. W. (1996). Soil pH and Soil Acidity. In: Methods of Soil Analysis Part 3 Chemical Methods (Eds Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., & Sumner, M. E.), https://doi.org/10.2136/sssabookser5.3.c16. Thomas, C. L., Acquah, G. E., Whitmore, A. P., McGrath, S. P. & Haefele, S. M. (2019). The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations. Agronomy, 9(12), 776. https://doi.org/10.3390/agronomy9120776. Walkley, A. & Black, I. A. (1934). An examination of the method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. Wickramasinghe, W.M.D.M., Devasinghe, D.A.U.D., Dissanayake, D.M.D., Benaragama, D.I.D.S., Egodawatta, W.C.P. & Suriyagoda, L.D.B. (2021). Growth physiology and crop yields of direct-seeded rice under diverse input systems in the Dry Zone of Sri Lanka. Tropical Agricultural Research, 32(3), 325-337. Widayati, O., Syaefullah, B.L., Sritiasni, S., Zurahmah, N., Aswandi, A., & Irma, I. (2023). Evaluation of the Growth and Yield of Organic Corn Fodder under Various Watering Times and Concentrations of Rabbit Urine Fertilizers. Buletin Peternakan, 47(4), 261-266, doi:10.21059/buletinpeternak.v47i4.84194. |
|
| Date published: 2025-06-25
Download full text