Bioremediation of heavy metals in spent engine oil-contaminated soil using mycorrhiza and cattle rumen digesta
Michael Nkereuwem, Adeniyi Adeleye, Christiana Ijah, Paul Tersoo, Mustapha Muhammad, Asimya Lemuel, Godiya Saleh
Abstract: Spent engine oil (SEO) is a complex mixture of petroleum hydrocarbons, heavy metals, and chemical additives and its contamination of agricultural soils poses severe challenges to soil health and fertility. The traditional remediation techniques have cost implications. Nevertheless, bioremediation is a cost-effective and sustainable remediation strategy. The aim of this study was to determine the efficacy of mycorrhizae and cattle rumen digesta in remediating heavy metals (Cr and Cu) in SEO-contaminated soil. Mycorrhiza, cattle rumen digesta and SEO were at two levels each. Data on Cr and Cu concentrations, bacterial and fungal populations were collected and analyzed using ANOVA at α 0.05. The results of the study reveals that mycorrhiza and cattle rumen digesta application yielded significantly higher bacterial and fungal populations leading to significant (p<0.05) reductions in Cr and Cu concentrations in SEO-contaminated soil. The combined application of mycorrhiza with 40 g/pot cattle rumen digesta had significantly (p<0.05) lower Cr and Cu concentrations compared to single application of either mycorrhiza or cattle rumen digesta. Mycorrhiza and cattle rumen digesta are therefore recommended for use in bioremediation of Cr and Cu contaminated soil.
Keywords: bioremediation; cattle rumen digesta; contaminated soil; heavy metals; mycorrhiza; spent engine oil
Citation: Nkereuwem, M., Adeleye, A., Ijah, C., Tersoo. P., Muhammad, M., Lemuel, A., & Saleh, G. (2025). Bioremediation of heavy metals in spent engine oil-contaminated soil using mycorrhiza and cattle rumen digesta. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 59(1), 40-53.
References: (click to open/close) | Abdelhafeez, I. A., El-Tohamy, S. A., & El-Dars, F. M.(2024). Enhanced phytoaccumulation dynamics of chromium and nickel from spent engine oil-contaminated soil amended with biomass derived bulking agent. Scientiae Radices, 3(3), 142-156 Abdulwahab, R., Bello, M., & Adamu, A. (2021). Bioremediation: An eco-friendly approach to soil contamination. Journal of Environmental Science and Technology, 15(4), 112-120. Adeleye, A. O., Ibrahim, A., Nkereuwem, M. E., Shiaka, P.G., & Yerima, M. B. (2023). Bio-stimulatory effects of cattle dung on lead decontamination potential of indigenous fungal population isolated from spent engine oil-polluted soil. Science Heritage Journal, 7(1), 18-23. Adeleye, A. O; Yerima, M. B; Nkereuwem, M. E; Onokebhagbe, V. O; Shiaka, P. G; Amoo, F. K., & Adam, I. K. (2019). Effect of organic amendments on the decontamination potential of heavy metals by Staphylococcus aureus and Bacillus cereus in soil contaminated with spent engine oil. Novel Research in Microbiology Journal, 3(5), 471-484. Akinrinde, E. A., & Obigbesan, G. O. (2000). Evaluation of the fertility status of selected soils for crop production in five ecological zones of Nigeria. Proceedings of the 26th Annual Conference of the Soil Science Society of Nigeria, 279–288. Aluko, T. S., Njoku, K. L., Adesuyi, A. A., & Akinola, M. O. (2018). Health Risk Assessment of Heavy Metals in Soil from the Iron Mines of Itakpe and Agbaja, Kogi State, Nigeria. Pollution, 4(3), 527-538. Amadi, A. N., Uchegbu, L. C., & Nwachukwu, C. (2020). Petroleum hydrocarbon contamination in Nigeria: Sources, impacts, and remediation strategies. Nigerian Journal of Environmental Sciences, 12(1), 56-70. Amanze, C., Amapu, I., Chude, V. O., & Chikwendu, D. (2016). Soil fertility assessment and mapping of some soils in the Sudan savanna agroecological zone of Nigeria. Journal of Soil Science and Environmental Management, 7(4), 48-57. Asadu, C. L. A., & Igboka, C. R. (2014). Effects of Animal Faeces and Their Extracts on Maize Yield in an Ultisol of Eastern Nigeria. J. Agric. Sustain. 5(1),1-13 Ayodele, A. E., Akinyemi, O. M., & Odebisi, O. J. (2023). Role of arbuscular mycorrhizal fungi in enhancing plant tolerance to heavy metal stress. Fungal Ecology Reports, 11(2), 79-92. Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434-438. Bremner, J.M. (1996). Nitrogen total. In: Methods of soil analysis. Part 3. Chemical Methods. Soil Science Society of America. Madison, Wis. p. 1085 Cherdthong, A. (2020). Potential use of rumen digesta as ruminant diet-a review. Tropical Animal Health Production, 52, 1-6 Ezugwu, J. A., Nweze, C. E., & Amadi, C. R. (2022). Enhancing phytoremediation efficiency through arbuscular mycorrhizal fungi. Journal of Bioremediation Science, 14(3), 103-119. FAO (2021). Guidelines for soil description (5th ed.). Foodand Agriculture Organization of the United Nations. Gebeyehu, H. R., & Bayissa, L. D. (2020). Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS One. 15(1), e0227883. Graj, W. M., Pawlik, B., & Mrozik, A. (2013). Bioremediation of petroleum hydrocarbon-contaminated soil: Microbial and plant roles. Environmental Biotechnology Journal, 22(5), 289-297. Ibrahim, E. A., El Sherbini, M. A. A., & Selim, E. M. (2023). Effects of biochar, zeolite and mycorrhiza inoculation on soil properties, heavy metal availability and cowpea growth in a multi contaminated soil. Scientific Report. 13, 6621 Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall of India Pvt Ltd. Joutey, N. T., Sayel, H., Bahafd, W., & El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol. 233, 45-69. McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 199–224). American Society of Agronomy. Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., ... & Simal-Gandara, J.(2022). Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud. Univ. Sci. 34(3), 101865. Moses, K. K., Aliyu, A., Hamza, A., & Mohammed-Dabo, I. A. (2024). Recycling of Waste Lubricating Oil: A Review of the Recycling Technologies with a Focus on Catalytic Cracking, Techno-Economic and Life Cycle Assessments. J Environ. Chem. Eng., 11(6), 111273. Nkereuwem, M. E., Adeleye, A. O., Kamaldeen, F., Sowunmi, L. I., Ijah, C. J., Nzamouhe, M., ... & Lemuel, A. (2024). Potential of Mycorrhizal Inoculation and Cattle Rumen Digesta in the Bioremediation of Spent Engine Oil Contaminated Soil. Innovare Journal of Sciences 12, 1-7. Nkereuwem, M. E., Adeleye, A. O., Karfi, U. A., Bashir, M., & Kamaldeen, F. (2022). Effect of mycorrhizal inoculation and organic fertiliser on bioremediation of spent engine oil contaminated soil. Agricultura Tropica Et Subtropica, 55, 119-132. Nkereuwem, M. E., Fagbola, O., Okon, I. E., Adeleye, A. O., & Nzamouhe, M. (2020a). Bioremediation potential of mycorrhiza fungi in crude oil contaminated soil planted with Costus lucanusianus. Amazonian Journal of Plant Research, 4, 441-455. Nkereuwem, S. O., Akpan, E. T., & Essien, M. C. (2020b). Application of organic amendments in the bioremediation of hydrocarbon-contaminated soils. Soil Remediation Journal, 6(4), 89-101. Ochei, J. O., & Kolhatkar, A. A. (2008). Medical laboratory science: Theory and practice (7th ed.) (pp. 820-821). New York: Tata McGraw Publishing Company Limited. Oghenerobor, E. I., Okonkwo, O. J., & Abah, J. (2021). Spent engine oil pollution in Nigeria: Challenges and remediation strategies. African Journal of Environmental Studies, 14(3), 88-95. Ogunwole, J.O., & Ogunleye, P.O. (2005). Influence of Long Term Application of Organic and Mineral Fertilizers on Quality of Savanna Alfisols. Journal of Sustainable Agriculture, 26(3), 5-14 Olalekan, A. A., & Oyedepo, S. J. (2023). Arbuscular mycorrhizal fungi: A biotechnological tool for contaminated soil restoration. Biotechnology in Agriculture, 15(1), 55-68. Olaniyi, O. A., Usman, A. B., & Ibrahim, S. T. (2022). Climatic variability and its impact on agricultural productivity in the Sudan Savannah region of Nigeria. Journal of Agro-Environmental Research, 15(2), 75-88. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. Olusola, S. A., Oladele, O. D., & Orinami, A. P. (2017). Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic Content and Heavy Metals of Soil Polluted with Oil Refinery Effluent using Amaranthus Cruentus as a Test Plant. International Journal of Environment, Agriculture and Biotechnology, 2(4). Omotayo, F. O., Adebayo, T. S., & Obanla, A. E. (2022). The persistence of petroleum hydrocarbons in soil ecosystems: A case study of spent engine oil contamination. International Journal of Environmental Pollution Studies, 19(6), 133-148. Pinheiro, A. C., Souza, L. A., & Santos, R. F. (2020). Bioremediation potential of biochar and compost in oil-contaminated soils. Soil Remediation Journal, 9(4), 102-118. Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Soil Survey Staff. (2002). Field book for describing and sampling soils (Version 2.0). USDA-Natural Resources Conservation Service, National Soil Survey Center. Usman, A. R. A., Kuzyakov, Y., & Stahr, K. (2005). Effect of clay minerals and organic matter on the immobilization of heavy metals in soils. Communications in Soil Science and Plant Analysis, 36(5-6), 601-612. Vilela, L. A. F., & Barbosa, M. V. (2019). Contribution of arbuscular mycorrhizal fungi in promoting cadmium tolerance in plants. Cadmium Tolerance in Plants. Elsevier. 553-586. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. Zhao, H., Lan, X., Yu, F., Li, Z., Yang, J., & Du, L. (2022). Comprehensive assessment of heavy metals in soil-crop system based on PMF and evolutionary game theory. Science of the Total Environment, 849, 157549. |
|
| Date published: 2025-03-27
Download full text