Boron neutron capture therapy and environmental health
Sachindra Lochana
, Sachini Hettiara
Abstract: Boron Neutron Capture Therapy (BNCT) is an innovative cancer treatment modality that exploits neutron beams to specifically destroy malignant cells. Despite its assuring clinical benefits, BNCT familiarizes itself with unique environmental health considerations, including radiation safety, waste supervision, and potential ecological ramifications. This review investigates these aspects by appraising radiation safety protocols, waste disposal procedures, and environmental monitoring implementations associated with BNCT facilities. Effective radiation shielding and demanding safety protocols are necessary to protect occupational and public health from potential neutron radiation exposure. Waste management implementations must inscribe the treatment, handling, and disposal of radioactive and biological waste to anticipate environmental contamination. Long-term ecological monitoring is decisive for detecting and mitigating any adverse influences on surrounding ecosystems. The review also emphasizes the significance of public awareness and education in addressing environmental health concerns. By integrating case studies from various international perspectives and recognizing research gaps, this review aims to contribute comprehensive insights into the ecological health suggestions of BNCT and propose strategies for enhancing its sustainability. The findings accentuate the need for continuous improvement in safety measures, waste management, and public engagement to corroborate that BNCT can be safely and effectively implemented in a technique that protects both human health and the environment.
Keywords: boron neutron capture therapy (BNCT); environmental health; radiation safety; radiation shielding; waste management
Citation: Citation: Lochana, W. V. A. S., & Hettiarachchi, S. N. (2024). Boron neutron capture therapy and environmental health. Bulgarian Journal of Soil Science Agrochemisty and Ecology 58(3), 23-35.
References: (click to open/close) | Abdullah, M. A., Rashid, R. S., Amran, M., Hejazii, F., Azreen, N. M., Fediuk, R., Voo, Y. L., Vatin, N. I., & Idris, M. I. (2022). Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers, 14(14), 2830. https://doi.org/10.3390/polym14142830 Abstracts from the 44th Conference of the Australasian Radiation Protection Society, Held in Conjunction with the 5th International Symposium of the International Commission on Radiological Protection. (2020). Annals of the ICRP, 49(1_suppl), 217-250. https://doi.org/10.1177/0146645320960680 Act, R. (2011). Application of the Resource Conservation and Recovery Act to the Department of Energy’s Atomic Energy Act Facilities. 1006, 6-22. International Atomic Energy Agency (2023). Advances in Boron Neutron Capture Therapy. https://www.iaea.org/publications/15339/advances-in-boron-neutron-capture-therapy (last accessed 03.04.2024). Al-Bader, A.-R., Agapito, J., & Pan, M. (2023). Perceptions of Canadian Radiation Oncologists, Medical Physicists, and Radiation Trainees about the Feasibility and Need of Boron Neutron Capture Therapy (BNCT) in Canada: A National Survey. Cancers, 15(14), 3626. https://doi.org/10.3390/cancers15143626 Al-Ibraheem, A., Moghrabi, S., Abdlkadir, A., Safi, H., Kazzi, Z., Al-Balooshi, B., Salman, K., Khalaf, A., Zein, M., Al Naemi, H., Aldousari, H., Mula-Hussain, L., Juweid, M., Hatazawa, J., Hawwari, F., & Mansour, A. (2024). An Overview of Appropriate Medical Practice and Preparedness in Radiation Emergency Response. Cureus, 16(6), e61627. https://doi.org/10.7759/cureus.61627 Ali, Y. F., Cucinotta, F. A., Ning-Ang, L., & Zhou, G. (2020). Cancer Risk of Low Dose Ionizing Radiation. Frontiers in Physics, 8, 234. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2020.00234 (last accessed 14.07.2024). Andeobu, L. (2020). Medical Waste and Its Management. In The Palgrave Handbook of Global Sustainability, pp. 1-29. https://doi.org/10.1007/978-3-030-38948-2_53-1 Barbhuiya, S., Das, B. B., Qureshi, T., & Adak, D. (2024). Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. Journal of Environmental Management, 356, 120712. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120712 Barker, R. F. (1980). Safety in Transportation of Radioactive Materials. Bennett, D. (2003). Engineered Barrier Systems and the Safety of Deep Geological Repositories http://www.oecd-nea.org/rwm/reports/2003/nea3615-ebs.pdf (last accessed 16.03.2024). Canet, M., Harbron, R., Thierry-Chef, I., & Cardis, E. (2022). Cancer Effects of Low to Moderate Doses of Ionizing Radiation in Young People with Cancer-Predisposing Conditions: A Systematic Review. Cancer Epidemiol Biomarkers Prev, 31(10), 1871-1889. https://doi.org/10.1158/1055-9965.EPI-22-0393 Capoulat, M. E., & Kreiner, A. J. (2023). Induced radioactivity in AB-BNCT: an analysis of the different facilities worldwide. Frontiers in Nuclear Engineering, 2, 1275396. https://www.frontiersin.org/journals/nuclear-engineering/articles/10.3389/fnuen.2023.1275396 (last accessed 07.02.2024). Caruso, C. C. (2010). Occupational health and safety for nurses benefits patients, too. Rehabilitation Nursing Journal, 35(5), 176. https://doi.org/10.1002/j.2048-7940.2010.tb00044.x Chichester, D. L. (2012). Production and applications of neutrons using particle accelerators. Industrial Accelerators and Their Applications, 243-306. https://doi.org/10.1142/9789814307055_0007 Coghi, P., Li, J., Hosmane, N. S., & Zhu, Y. (2023). Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Medicinal Research Reviews, 43(5), 1809-1830. https://doi.org/10.1002/med.21964 Council, E. (2012). Environmental health risk management: Guidelines for assessing human health risks from environmental hazards. Dai, Q., Yang, Q., Bao, X., Chen, J., Han, M., & Wei, Q. (2022). The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Molecular Pharmaceutics, 19(2), 363-377. https://doi.org/10.1021/acs.molpharmaceut.1c00810 Daw, G., & Williams, R. (1977). Secure Storage of Radioactive Waste. Combustion, 48(12), 24-32. Department of Energy and Climate Change (DECC) and the Nuclear Decommissioing Authority (2010). Radioactive Wastes in the UK : A Summary of the 2010 Inventory. https://ukinventory.nda.gov.uk/wp-content/uploads/2014/02/2010-UK-Radioactive-Waste-Inventory-Summary-of-the-2010-Inventory.pdf (last accessed 19.05.2024). EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, & WHO (2014). IAEA Safety Standards for protecting people and the environment. Safety Series Requirements, No. GSR Part 3. http://ec.europa.eu/dgs/communication/services/visual_identity/index_en.htm (last accessed 02.06.2024). European Union (2011). Radioactive waste and spent fuel management directive - L 199/48. Official Journal of the European Union, June, 48-56. Fentiman, A. W. (2009). Transportation of Radioactive Materials. In Environmentally Conscious Materials Handling (Ed. Kutz, M.), 217-237. https://doi.org/10.1002/9780470432730.ch8 Forsberg, C. W. (2003). Radioactive Wastes (Third Edition, Meyers, R. (Ed.); pp. 643-659). https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00642-6 Forum, I. (2015). Nuclear Energy Buyers Guide in Japan High Quality and Reliability. Gencel, O., Bozkurt, A., Kam, E., Yaras, A., Erdogmus, E., & Sutcu, M. (2021). Gamma and neutron attenuation characteristics of bricks containing zinc extraction residue as a novel shielding material. Progress in Nuclear Energy, 139, 103878. https://doi.org/https://doi.org/10.1016/j.pnucene.2021.103878 Gokul, P., Ashok Kumar, J., Preetha, R., Chattopadhyaya, S., & Mini, K. M. (2023). Additives in concrete to enhance neutron attenuation characteristics – A critical review. Results in Engineering, 19, 101281. https://doi.org/https://doi.org/10.1016/j.rineng.2023.101281 Gurau, D., Iorga, I., Zicman, L., Done, L., & Neacsu, E. (2023). Minimizing Radioactive Waste Through Chemical Decontamination Techniques. Romanian Journal of Physics, 68(7–8). https://doi.org/10.59277/romjphys.2023.68.909 IAEA (2019). International Conference on Effective Nuclear and Radiation Regulatory Systems: Working Together to Enhance Cooperation, November, 4-7, 2019, The Hague, Netherland. Huang, Y. S., Peir, J. J., Wu, C. J., Wang, M. Y., Chen, Y. W., Lee, J. C., & Chou, F. I. (2023). NeuTHOR Station—A Novel Integrated Platform for Monitoring BNCT Clinical Treatment, Animal and Cell Irradiation Study at THOR. Life, 13(3), 800. https://doi.org/10.3390/life13030800 IAEA-TECDOC-1223 (2001). Current Status of neutron capture therapy. Iaea, 2001 (8), May, 75-77. IAEA (2005). Development opportunities for small and medium scale accelerator driven neutron sources. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1439_web.pdf (last accessed 24.04.2024). International Atomic Energy Agency (2003). Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes. Technical Reports Series No. 413. http://www-pub.iaea.org/MTCD/Publications/PDF/TRS413_web.pdf (last accessed 03.05.2024). Isbn, C., Pdf, T., Press, N. A., Academy, N., Panel, S., Interactions, E., Society, W., Isbn, C., Pdf, T., Press, N. A., & Academy, N. (1985). Engineering in Society. Janik-Karpinska, E., Brancaleoni, R., Niemcewicz, M., Wojtas, W., Foco, M., Podogrocki, M., & Bijak, M. (2023). Healthcare Waste-A Serious Problem for Global Health. Healthcare, 11(2), 242 https://doi.org/10.3390/healthcare11020242 Jin, W. H., Seldon, C., Butkus, M., Sauerwein, W., & Giap, H. B. (2022). A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. International Journal of Particle Therapy, 9(1), 71-82. https://doi.org/10.14338/IJPT-22-00002.1 Khan, S., Syed, A., Ahmad, R., Rather, T. A., Ajaz, M., & Jan, F. (2010). Radioactive waste management in a hospital. International Journal of Health Sciences, 4(1), 39-46. Kim, Y. (2016). The Radiation Problem and Its Solution from a Health Communication Perspective. Journal of Korean Medical Science, 31(Suppl 1), S88-98. https://doi.org/10.3346/jkms.2016.31.S1.S88 Kiyanagi, Y. (2018). Accelerator-based neutron source for boron neutron capture therapy. Therapeutic Radiology and Oncology, 2. https://tro.amegroups.org/article/view/4713 (last accessed 13.07.2024). Krishnamurthy, R., Mummudi, N., Goda, J. S., Chopra, S., Heijmen, B., & Swamidas, J. (2022). Using artificial intelligence for optimization of the processes and resource utilization in radiotherapy. JCO Global Oncology, 8, e2100393. https://doi.org/10.1200/GO.21.00393 Lee, S. G., & Cheong, J. H. (2020). Neutron activation of structural materials of a dry storage system for spent nuclear fuel and implications for radioactive waste management. Energies, 13(20), 5325. https://doi.org/10.3390/en13205325 Li, J., Chen, L., & Wang, J. (2021). Solidification of radioactive wastes by cement-based materials. Progress in Nuclear Energy, 141, 103957. https://doi.org/https://doi.org/10.1016/j.pnucene.2021.103957 Li, Y., Xia, P., Peng, D., Zou, S., Wu, X., Zhang, J., Zhang, Z., Gao, J., Wang, L., & Fu, J. (2012). Performance and characteristic of in-hospital neutron irradiator. Strateg. Study Chin. Acad. Eng, 14, 20-22. Luhar, I., Luhar, S., Abdullah, M. M. A. B., Sandu, A. V., Vizureanu, P., Razak, R. A., ... & Imjai, T. (2023). Solidification/stabilization technology for radioactive wastes using cement: An appraisal. Materials, 16(3), 954. https://doi.org/10.3390/ma16030954 Magni, C., Ferrarini, M., Postuma, I., Vercesi, V., Fatemi, S., Ramos, R. L., & Bortolussi, S. (2024). Radiation protection aspects in the design of a Boron Neutron Capture Therapy irradiation room. Radiation Physics and Chemistry, 218, 111621. https://doi.org/https://doi.org/10.1016/j.radphyschem.2024.111621 Malouff, T. D., Seneviratne, D. S., Ebner, D. K., Stross, W. C., Waddle, M. R., Trifiletti, D. M., & Krishnan, S. (2021). Boron neutron capture therapy: a review of clinical applications. Frontiers in oncology, 11, 601820. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.601820 (last accessed 06.04.2024). Management, R. W. (1999). Scenario Development Methods and Practice. Marsh, A. I., Williams, L. G., & Lawrence, J. A. (2021). The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste. Progress in Nuclear Energy, 137, 103736. https://doi.org/https://doi.org/10.1016/j.pnucene.2021.103736 Matsumura, A., Asano, T., Hirose, K., Igaki, H., Kawabata, S., & Kumada, H. (2023). Initiatives Toward Clinical Boron Neutron Capture Therapy in Japan. Cancer Biotherapy & Radiopharmaceuticals, 38(3), 201-207. https://doi.org/10.1089/cbr.2022.0056 McFarlane, J., Anovitz, L. M., Cheshire, M. C., DiStefano, V. H., Bilheux, H. Z., Bilheux, J. C., ... & Qualls, L. M. (2021). Water migration and swelling in engineered barrier materials for radioactive waste disposal. Nuclear Technology, 207(8), 1237-1256. https://doi.org/10.1080/00295450.2020.1812348 Monti Hughes, A., & Hu, N. (2023). Optimizing boron neutron capture therapy (BNCT) to treat cancer: an updated review on the latest developments on boron compounds and strategies. Cancers, 15(16), 4091. https://doi.org/10.3390/cancers15164091 Moss, R., Watkins, P., Vroegindeweij, C., Stecher-Rasmussen, F., Huiskamp, R., Ravensberg, K., ... & Gabel, D. (2001). The BNCT facility at the HFR Petten: Quality assurance for reactor facilities in clinical trials (No. IAEA-TECDOC--1223). Murray, R. L. (1981). Understanding Radioactive Waste, Battelle, Columbus (Ohio). Mushtaq, S., Ae, P. J., Kim, J. Y., Lee, K. C., & Kim, K. I. (2023). The role of radiolabeling in BNCT tracers for enhanced dosimetry and treatment planning. Theranostics, 13(15), 5247-5265. https://doi.org/10.7150/thno.88998 National Academies of Sciences, Engineering, and Medicine (2021). Radiation Sources and Alternative Technologies in Medicine and Research. In Radioactive Sources: Applications and Alternative Technologies. National Academies Press (US). https://doi.org/10.17226/26121 Nedunchezhian, K., Aswath, N., Thiruppathy, M., & Thirugnanamurthy, S. (2016). Boron Neutron Capture Therapy - A Literature Review. Journal of Clinical and Diagnostic Research : JCDR, 10(12), ZE01–ZE04. https://doi.org/10.7860/JCDR/2016/19890.9024 Niu, S. (2011). Radiation protection of workers. International Labour Office. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@ed_protect/@protrav/@safework/documents/publication/wcms_154238.pdf (last accessed 23.04.2024). OECD (2001). NUCLEAR LEGISLATION Regulatory and Institutional Framework for Nuclear Activities. Nuclear Energy Agency. OECD (2010). Occupational Radiological Protection Principles and Criteria for Designing New Nuclear Power Plants (Issue 6975). https://www.oecd-nea.org/rp/reports/2010/nea6975-criteria-new-plants.pdf (last accessed 14.07.2024). Ojovan, M. I., & Lee, W. E. (2011). Glassy wasteforms for nuclear waste immobilization. Metallurgical and Materials Transactions A, 42, 837-851. https://doi.org/10.1007/s11661-010-0525-7 Ong, S. J., Anil, G., Chia, K. L., Khoo, D., Lee, J. K., Chen, P. X., ... & Renfrew, I. (2022). The effectiveness of the Safety in Interventional Radiology (SIR) Shield in reducing droplet transmission and its effect on image quality and radiation dose. The British Journal of Radiology, 95(1129), 20210835. https://doi.org/10.1259/bjr.20210835 Osre, O. (2005). Model RCRA Section 7003 Administrative Order on Consent. Pandit, M., & Vinjamuri, S. (2014). Communication of radiation risk in nuclear medicine: Are we saying the right thing? Indian Journal of Nuclear Medicine : IJNM : The Official Journal of the Society of Nuclear Medicine, India, 29(3), 131-134. https://doi.org/10.4103/0972-3919.136554 Petisco-Ferrero, S., Idoeta, R., Rozas, S., Olondo, C., & Herranz, M. (2023). Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment. Heliyon, 9(9), e19470. https://doi.org/10.1016/j.heliyon.2023.e19470 Qureshi, F., Ramprasad, A., & Derylo, B. (2022). Radiation Monitoring Using Personal Dosimeter Devices in Terms of Long-Term Compliance and Creating a Culture of Safety. Cureus, 14(8), e27999. https://doi.org/10.7759/cureus.27999 Rajendran, S., Giridhar, S., Chaudhari, S., & Gupta, P. K. (2021). Technological advancements in occupational health and safety. Measurement: Sensors, 15, 100045. https://doi.org/https://doi.org/10.1016/j.measen.2021.100045 Rose, A., & Rae, W. I. D. (2019). Personal Protective Equipment Availability and Utilization Among Interventionalists. Safety and Health at Work, 10(2), 166-171. https://doi.org/10.1016/j.shaw.2018.10.001 Sato, M., Hirose, K., Takeno, S., Aihara, T., Nihei, K., Takai, Y., ... & Ono, K. (2024). Safety of Boron Neutron Capture Therapy with Borofalan (10B) and Its Efficacy on Recurrent Head and Neck Cancer: Real-World Outcomes from Nationwide Post-Marketing Surveillance. Cancers, 16(5), 869. https://doi.org/10.3390/cancers16050869 Sauerwein, W. A., Fischer, T., Sancey, L., Verry, C., Matsuura, E., Moss, R. L., & Wittig, A. (2023). Principles, Recent Developments and Perspectives in Boron Neutron Capture Therapy (BNCT). Bio-Algorithms and Med-Systems, 19(1), 48-53.https://doi.org/10.5604/01.3001.0054.1824 Sauerwein, W. A. G., Moss, R. L., & European Commission. Joint Research Centre. Institute for Energy. (2009). Requirements for boron neutron capture therapy (BNCT) at a nuclear research reactor. https://ec.europa.eu/jrc/en/publication/books/requirements-boron-neutron-capture-therapy-bnct-nuclear-research-reactor (last accessed 11.04.2024). Schwint, A. E., Garabalino, M. A., Monti Hughes, A., Pozzi, E. C. C., Heber, E. M., Palmieri, M. A., & Trivillin, V. A. (2019). Teachings of our translational studies on boron neutron capture therapy (BNCT): thinking “outside the box”. https://tro.amegroups.org/article/view/5112 (last accessed 03.07.2024). Seneviratne, D., Advani, P., Trifiletti, D. M., Chumsri, S., Beltran, C. J., Bush, A. F., & Vallow, L. A. (2022). Exploring the biological and physical basis of boron neutron capture therapy (BNCT) as a promising treatment frontier in breast cancer. Cancers, 14(12), 3009. https://doi.org/10.3390/cancers14123009 Seneviratne, D. S., Saifi, O., Mackeyev, Y., Malouff, T., & Krishnan, S. (2023). Next-generation boron drugs and rational translational studies driving the revival of BNCT. Cells, 12(10), 1398. https://doi.org/10.3390/cells12101398 Series, I. T. (n.d.). Modelling Approaches for Management and Remediation at Sites Affected by Past Activities Report of Working Group 2 EMRAS II Topical Heading Reference Approaches for Human Dose Assessment Environmental Modelling for Radiation Safety (EMRAS II) Programme (Issue Emras Ii). www.iaea.org/resources/safety-standards (last accessed 26.07.2024). Shen, S., Wang, S., Zhou, D., Wu, X., Gao, M., Wu, J., ... & Wang, N. (2024). A clinician’s perspective on boron neutron capture therapy: promising advances, ongoing trials, and future outlook. International Journal of Radiation Biology, 100(8), 1126-1142. https://doi.org/10.1080/09553002.2024.2373746 Silarski, M., Dziedzic-Kocurek, K., Sobczuk, F., Nykiel, A., Moskal, P., Niedźwiecki, S., ... & Szczepanek, M. (2023). A new detector concept based on the prompt gamma radiation analysis for in vivo boron monitoring in BNCT. Radiation Protection Dosimetry, 199(15-16), 1932-1936. https://doi.org/10.1093/rpd/ncac245 Singh, H., YT, K., Mishra, A. K., Singh, M., Mohanto, S., Ghumra, S., ... & Thangadurai, D. (2024). Harnessing the foundation of biomedical waste management for fostering public health: strategies and policies for a clean and safer environment. Discover Applied Sciences, 6(3), 89. https://doi.org/10.1007/s42452-024-05735-2 Siskind, B., Dougherty, D. R., & MacKenzie, D. R. (1985). Extended storage of low-level radioactive waste: potential problem areas (No. BNL-NUREG--36149). Brookhaven National Lab. Skwierawska, D., López-Valverde, J. A., Balcerzyk, M., & Leal, A. (2022). Clinical viability of boron neutron capture therapy for personalized radiation treatment. Cancers, 14(12), 2865. https://doi.org/10.3390/cancers14122865 International Atomic Energy Agency (2022). Status and Trends in Spent Fuel and Radioactive Waste Management (Issue NW-T-1.14 (Rev. 1)). https://www.iaea.org/publications/14739/status-and-trends-in-spent-fuel-and-radioactive-waste-management (last accessed 27.03.2024). Suzuki, M. (2020). Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. International journal of clinical oncology, 25(1), 43-50. https://doi.org/10.1007/s10147-019-01480-4 Text, F., Assembly, T. N., Rea, F., Senate, T., Reading, F., Assembly, T. N., & Reading, D. (2004). Hazardous Materials and Waste Management Plan. 2006(March), 4–7. UTK (1999). Guidance for Conducting Risk Assessments and Related Risk Activities for the DOE-ORO Environmental Management Program. https://rais.ornl.gov/guidance/qa_forms.html (last accessed 08.02.2024). WHO (2021). Compendium of WHO and other UN guidance on health and environment. Chapter 5 Chemicals. Wilson, J. W. (2000). Overview of radiation environments and human exposures. Health Physics, 79(5), 470-494. https://doi.org/10.1097/00004032-200011000-00005 Working Group on Design and Safety Analysis (2023). Phase 3 Report Safety, Security and Safeguards from a Regulatory Perspective: An Integrated Approach. December. https://www.iaea.org/sites/default/files/24/02/smr_rf_phase_3_report_-_safety_security_and_safeguards_from_a_regulatory_perspective_an_integrated_approach.pdf (last accessed 15.01.2024). World Health Organization (2016). Chapter 3 : Risk-benefit dialogue. Communicating Radiation Risk in Pediatric Imaging, 49–71. Wu, H., Guan, X., Wu, G., Wang, H., Wang, Y., Du, J., Zhang, L., & Gu, L. (2023). Experimental validation of a BNCT epithermal neutron flux detector using 55Mn(n,γ)56Mn reaction at an accelerator-based BNCT facility. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1057, 168779. https://doi.org/https://doi.org/10.1016/j.nima.2023.168779 You, Z. F., Huang, C. K., & Liu, Y. W. H. (2023). A study on out-of-field leakage of an accelerator-based neutron beam for boron neutron capture therapy. Frontiers in Oncology, 13, 1284405. https://doi.org/10.3389/fonc.2023.1284405 You, Z. F., Huang, C.-K., & Liu, Y. W. H. (2024). A study on out-of-field leakage of an accelerator-based neutron beam for boron neutron capture therapy. Frontiers in Oncology, 13. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1284405 (last accessed 07.02.2024). Zhang, Z., Chong, Y., Liu, Y., Pan, J., Huang, C., Sun, Q., ... & Liu, T. (2023). A review of planned, ongoing clinical studies and recent development of BNCT in mainland of china. Cancers, 15(16), 4060. https://doi.org/10.3390/cancers15164060 Zhou, T., Igawa, K., Kasai, T., Sadahira, T., Wang, W., Watanabe, T., ... & Huang, P. (2024). The current status and novel advances of boron neutron capture therapy clinical trials. American Journal of Cancer Research, 14(2), 429. https://doi.org/10.62347/HBBE6868 |
|
| Date published: 2024-09-30
Download full text