Възможности за химичен контрол на ръжда по фасул, с причинител Uromyces appendiculatus
Магдалена Колева

Резюме: Целта на настоящото проучване е да установи ефективноста на фунгициди на база: азоксистробин, дифеноконазол, пираклостробин + боскалид, бордолезова смес за борба с ръжда по фасул, с причинител Uromyces appendiculatus, при еднократно приложение. Използвани са сорт „Скития“ и „Добруджански 7“. Нападението от ръжда е проследено двукратно: при поява на соруси по вариантите и 14 дни след прилагане на фунгицидите. Изчислени са индекса на нападение (ИН), площ под кривата на развитие на болестта (AUDPC) (горна/долна листна повърхност) и ефективност (Е) на фунгицидите. Прeз 2023 стойностите на AUDPC са най-високи при контролния вариант (65,18/64,56), следван от бордолезовата смес (35,48/37,42), дифеноконазол (22,86/21,45), азоксистробин (18,74/20,32) и пираклостробин + боскалид (18,84/20,26). ИН при контролата е 34,26%, следвана от бордолезовата смес (32,96%), пираклостробин + боскалид (12,85%), дифеноконазол (9,56%) и азоксистробин (7,88%). Най-висока ефективност показва азоксистробин (78%), следван от дифеноконазол (72,1%), пираклостробин + боскалид (62,5%) и бордолезовата смес (3,76%). През 2024 стойностите на AUDPC са най-високи при варианта третиран с бордолезова смес (195,64/186,75), следвани от контролата (189,00/183,40). Най-нисък AUDPC има при азоксистробин (52,60/51,90), следван от дифеноконазол (58,23/65,10) и пираклостробин + боскалид (145,60/173,60). ИН е най-висок при бордолезова смес (66,24%), следван от контролата (65,34%), пираклостробин+боскалид (44,58%), а най-нисък при азоксистрибин (25,36%) и дифеноконазол (35,68%). Ефективността на използваните фунгициди през 2024 е най-висока при азоксистробин (61,19%), следвана от дифеноконазол (45,39%), пираклостробин + боскалид (31,77%). Бордолезовата смес не е ефективна по отношение на ръждата по фасул през 2024. Анализът на варианса за двете години показва достоверно влияние както на самостоятелното действие на проучваните фактори (година, период на отчитане, фунгицид), така и на тяхното взаимодействие по отношение както на AUDPC, така и на ИН.
Ключови думи: обикновен фасул; фунгициди; P. vulgaris
Цитиране: Koleva, M. (2025). Chemical control options for common bean rust, caused by Uromyces appendiculatus. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 59(2), 61-72 (Bg).
Литература: (click to open/close) | Abbott, W.S. (1925). A method of computing the effectiveness of insecticide. Journal of Economic Entomology, 18(2), 265-267. Abo-Elyousr, K. A., Abdel-Rahim, I. R., Almasoudi, N. M., & Alghamdi, S. A. (2021). Native Endophytic Pseudomonas putida as a Biocontrol Agent against Common Bean Rust caused by Uromyces appendiculatus. J Fungi, 7(9), 745, https://doi.org/10.3390/jof7090745. Arslan, U. (2014). Efficacy of plant oils on the control of bean rust and wheat leaf rust. Fresenius Environ Bull, 23, 2259-2265. Beleva, М. (2010). Investigations on common bean rust in Bulgaria. PhD Thesis, Doubrudzha Agricultural Institute, General Toshevo, Bulgaria (Bg). Bock, C.B., Pethybridge, S.J., Barbedo, J.G.A., Esker, P.D. & Mahlein, A.K., & Ponte, E.M. (2022). A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues. Tropical Plant Pathology, 47, 14-24. https://doi.org/10.1007/s40858-021-00454-0. Bulgarian Food Safety Agency (2025). National electronic register of plant protection products authorised for placing on the market and use. https://iisr.egov.bg/jasperserver/flow.html?_flowId=viewReportFlow&reportUnit=%2Fpublic%2Fpest%2Fregister_1_a&_eventId_drillReport=&_flowExecutionKey=e3s2&reportLocale=en_US (last accessed 24.03.2025). Cruz-Triana, A., Rivero-González, D., Infante-Martínez, D., Echevarría-Hernández, A., & Martínez-Coca, B. (2018) Management of phytopathogenic fungi in Phaseolus vulgaris L. with the application of Trichoderma Asperellum Samuels, Lieckfeldt & Nirenberg. Rev Protección Veg, 33(3), 1–7. Devi, B., Gupta, S. K., Singh, G., & Prasad, P. (2020). Efficacy of new generation fungicides against French bean rust caused by Uromyces appendiculatus. Phytoparasitica, 48, 535–543. https://doi.org/10.1007/s12600-020-00820-9. Duncan, D. (1955). Multiple range and multiple F-test. Biometrics, 11, 1-42. Feller, C., Bleiholder, H., Buhr, L., Hack, H., Hess, M., Klose, R., ... & Weber, E. (1995). Phanologische entwicklungsstadien von gemusepflanzen II. fruchtgemuse und hulsenfruchte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 47(9), 217-232. Genchev, D. & Kiryakov, I. (2005). Dry bean in mountain regions in Bulgaria – present and future (Mini-Review), Res. Commun. of U.S.B. branch Dobrich (Electronic version), 7 https://www.oocities.org/usb_dobrich/009.pdf (last accessed 12.04.2025) (Bg). Harter, L.L., Andrus, C.F. & Zaumeyer, W.J. (1935). Studies on the bean rust caused by Uromyces phaseoli typical. J. Agric. Res., 50, 737-759. Imhoff, M.W., Main, C.E. & Leonard, K.J. (1982). Effect of temperature, dew period and age of leaves, spores and source pustules on germination of bean rust urediospores. Phytopathology, 71(6), 577-583. Jeger, M.J., & Viljanen-Rollinson S.L.H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet., 102, 32-40. Jochua, C.N., Steadman, J.R., Amane, M.I.V., & Fenton, J.G. (2004). Pathotype variation and sources of resistance to the common bean rust pathogen in Southern Mozambique. Ann. Rep. of Bean Improv. Coop., 47, 113-114. Juliatti, F.C., de Azevedo, L.A.S., & Juliatti, F.C. (2017). Strategies of Chemical Protection for Controlling Soybean Rust. In: Soybean - The Basis of Yield, Biomass and Productivity (Ed. Kassai, M.), InTech, https://doi.org/10.5772/67454. Juroszek, P., & von Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol., 60(1), 100-112. Kiryakov, I. & Genchev, D. (2001). Phiziological special ization of Uromyces appendiculatus (Pers: Pers.) Unger in Bulgaria and sources of resistance. Res. Commun. of U.S.B. branch Dobrich, 3, 45-50 (Bg). Kiryakov, I. & Genchev, D. (2002). Sources of resistance to the main diseases in common bean in Bulgaria in core collection of Dorudja agricultural institute. In: Scientific session “50 years Dobridja agricultural institute”, 1 June 2001, Dobrich, 1, 251-260 (Bg). Kiryakov, I. & Genchev, D. (2004). New sources of resistance to bean rust in the collection of Dobrudja Agricultural Institute, Res. Commun. of U.S.B. branch Dobrich, 6(1), 72-77 (Bg). Koleva, M. & Kiryakov, I. (2020). Pathotype diversity of Uromyces appendiculatus in Northeastern Bulgaria. Journal of Central European Agriculture, 21(4), 789-795, https://doi.org/10.5513/JCEA01/21.4.2698. Koleva, M. & Kiryakov, I. (2021a). Resistance in common bean to Uromyces appendiculatus under field and greenhouse conditions. Trakia Journal of Sciences, 19(2), 113-121. Koleva, M. & Kiryakov, I. (2021b). Sources of resistance in common bean accessions to a set of races of Uromyces appendiculatus. Bulgarian Journal of Soil Science Agrochemisty and Ecology, 55(1), 37-45 (Bg). Kovachevski, I. (1930). The diseases in common bean. National Printing House, Sofia (Bg). Köhle, H., Grossmann, K., Retzlaff, G., & Akers, A. (1997) Physiologi cal effects of the new fungicide JuwelReg. On yield in cereals. Gesunde Pflanzen, 49(8), 267-271. Levy, C. (2005). Epidemiology and chemical control of soybean rust in Southern Africa. Plant Disease, 89, 669-674. McKinney, H.H. (1923). A new system of grading plant diseases. J. Agric. Res., 26, 195-218. McMillan, R.T. (2000). New fungicide evalutions for bean rust of snap bean. Annu. Rep. Of Bean Improv. Coop., 43, 35-36. Mullins, C.A., Straw, R.A., Shamiyeh, N.B., & Follum, R. (1999). Evalution of foliar fungicides for control of rust on snap bean. Annu. Rep. Of Bean Improv. Coop., 44, 41-42. Mullins, C.A., Straw, R.A., Shamiyeh, N.B., & Follum, R. (2000). Evaluation of fungicides for control of rust of edible bean cultivars, 1999. Annu. Rep. Of Bean Improv. Coop., 45, 186-187. Osuna-Caballero, S., Rispail, N.,·Barilli, E.,·& Rubiales, D. (2024). Management and breeding for rust resistance in legumes. Journal of Plant Pathology, https://doi.org/10.1007/s42161-024-01679-z. Pohronezny, K., Francis, J., & Fong, W.C. (1987). Strategies for chemical control of snap bean rust in Florida and their compatibility with Canadian residue tolerances. Plant Disease, 71, 639-642. Selim, R. E., & Khalil, M. S. (2021) Strobilurins: New group of fungicides. J. Plant Sci Phytopathol., 5(2), 63-64. Sharma, N., Sharma, S., Gupta, S.K., & Sharma, M. (2019). Evaluation of fungicides against bean rust (Uromyces appendiculatus). Pl. Dis. Res., 33 (2), 174-179. Schwartz, H.F., McMillan, M.S., Steadman, J.R., & Kerr, E.D. (1996). Bio-Technical management of bean rust on the high plains. Annu. Rep. Of Bean Improv. Coop., 39, 82-83. Stavely, J.R. (1983). A rapid technique for inoculation of Phaseolus vulgaris with multiple pathotypes of Uromyces phaseoli. Phytopathology, 73, 676-679. Stavely, J.R. (1985). The modified Cobb scale for estimating bean rust intensity. Annu. Rep. of Bean Improv. Coop., 28, 31-32. Stavely, J.R. (1991). Compendium of Bean Diseases (Ed. Hall, R.). APS Press. 24-25. Walter, H. (2016). “Fungicidal Succinate-Dehydrogenase-Inhibiting Carboxamides”. In: Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals (Eds. Lamberth, C., & Dinges, J.). Wiley. pp. 405-425. |
|
| Дата на публикуване: 2025-06-25
Свали пълен текст