Economic factors of chitosan based packaging (review)
Gabor Zsivanovits

, Stoil Zhelyazkov

, Petya Sabeva

, Angel Iliev

Резюме: The food packaging is one of the most important part of the food industry. It concerns being a preservation technology, but it is an important factor in the marketing and logistics too. Nowadays the environment sustainability of packaging concerns the most serious between more and more other features. The ideal food packaging material should keep the food safety and quality, be easy for maintenance, inexpensive, capable for recycling and biodegradable. The most commercial packaging are the polyethylene, polypropylene, polyethylene-terephthalate based composites but they are not suitable for the circular bio economy because they are petroleum based and their waste is not biodegradable. The chitosan maybe a suitable alternative for food packaging because it is derived of the chitin, which is the second most abundant biopolymer on the Earth and its characteristics concerns for versatile application in the food industry. It is commercial, capable to preserve the quality and safety of the food or their components, environment friendly and has healthy benefits. This study is a collection about the application of chitosan based multicomponent packaging materials developed in the projects of the authors collective.
Ключови думи: antimicrobial activity; antioxidant activity; barrier properties; environment sustainability; physical properties; quality and safety preservation
Цитиране: Zsivanovits, G., Zhelyzakov, S., Sabeva, P., & Iliev, A. (2025). Economic factors of chitosan based packaging (review). Bulgarian Journal of Soil Science Agrochemisty and Ecology, 59(1), 33-39.
Литература: (click to open/close) | Abd El-Hack, M. E., El-Saadony, M. T., Shafi, M. E., Zabermawi, N. M., Arif, M., Batiha, G. E., ... & Al-Sagheer, A. A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. International Journal of Biological Macromolecules, 164, 2726-2744. Bradić, B., Novak, U., & Likozar, B. (2020). Crustacean shell bio-refining to chitin by natural deep eutectic solvents. Green Processing and Synthesis, 9(1). https://doi.org/ 10.1515/gps-2020-0002. Chaudhary, S., Kumar, S., Kumar, V., & Sharma, R. (2020). Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. International journal of biological macromolecules, 152, 154-170. Chavan, P., Lata, K., Kaur, T., Jambrak, A. R., Sharma, S., Roy, S., Sinhmar A., Thory R., Singh G. P., Aayush K., & Rout, A. (2023). Recent advances in the preservation of postharvest fruits using edible films and coatings: A comprehensive review. Food chemistry, 418, 135916. Chen, C., Chaudhary, A., & Mathys, A. (2020). Nutritional and environmental losses embedded in global food waste. Resources, Conservation and Recycling, 160, 104912. Chiralt, A., Menzel, C., Hernandez-García, E., Collazo, S., & Gonzalez-Martinez, C. (2020). Use of by-products in edible coatings and biodegradable packaging materials for food preservation. In Sustainability of the food system (pp. 101-127). Academic Press. Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European polymer journal, 49(4), 780-792. Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36(8), 981-1014. Dey, P., Bhattacharjee, S., Yadav, D. K., Hmar, B. Z., Gayen, K., & Bhowmick, T. K. (2023). Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. International Journal of Biological Macromolecules, 127412. Do Canto, N. R., Grunert, K. G., & De Barcellos, M. D. (2021). Circular food behaviors: a literature review. Sustainability, 13(4), 1872. Faizuloev, E., Marova, A., Nikonova, A., Volkova, I., Gorshkova, M., & Izumrudov, V. (2012). Water-soluble N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride as a nucleic acids vector for cell transfection. Carbohydrate polymers, 89(4), 1088-1094. Fan, N., Wang, X., Sun, J., Lv, X., Gu J., Zhao, C., &Wang, D. (2022). Effects of konjac glucomannan/pomegranate peel extract composite coating on the quality and nutritional properties of fresh-cut kiwifruit and green bell pepper. Journal of Food Science and Technology, 59 (1), 228-238. Firdous, N., Moradinezhad, F., Farooq, F., & Dorostkar, M. (2023). Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food chemistry, 407, 135186. Fu, X., Chang, X., Ding, Z., Xu, H., Kong, H., Chen, F., Wang R., Shan Y. & Ding, S. (2022). Fabrication and characterization of eco-friendly polyelectrolyte bilayer films based on chitosan and different types of edible citrus pectin. Foods, 11(21), 3536. Gechev, B., Zsivanovits, G., Iliev, A., & Marudova, M. (2023). Chitosan/grapeseed oil multicomponent edible films-design and properties. Journal of Physics: Conference Series, 2436(1), 012029, IOP Publishing. Jegannathan, K. R., & Nielsen, P. H. (2013). Environmental assessment of enzyme use in industrial production-a literature review. Journal of Cleaner Production, 42. Kaya, M., Seyyar, O., Baran, T., Erdo˘gan, S., & Kar, M. (2014). A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology. International Journal of Biological Macromolecules, 65, 553-558. Kean, T., & Thanou, M. (2011). Chitin and chitosan: sources, production and medical applications. P.A. Williams(Ed.), Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters, Royal Society of Chemistry, Cambridge, England, pp. 292-318 Khajavian, M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and derivative chitosan-based structures—Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 275, 118702. Kumar, A., Hasan, M., Mangaraj, S., Pravitha, M., Verma, D. K., & Srivastav, P. P. (2022). Trends in edible packaging films and its prospective future in food: a review. Applied Food Research, 2(1), 100118. Kumar, D., & Shahid, M. (2020). Natural materials and products from insects: Chemistry and applications. Springer. Kuprina, E. E., Timofeeva, K. G., & Vodolazhskaya, S. V. (2002). Electrochemical preparation of chitin materials. Russian Journal of Applied Chemistry, 75(5). Lamani, N. A. (2023). Effect of Edible Coatings on the Shelf-Life Extension of Fresh/Cut Fruits and Vegetables. McGill University, Canada. Liyanapathiranage, A., Dassanayake, R. S., Gamage, A., Karri, R. R., Manamperi, A., Evon, P., Jayakodi Y., Madhujith T. & Merah, O. (2023). Recent developments in edible films and coatings for fruits and vegetables. Coatings, 13(7), 1177. Marudova, M., Sotirov, S., Zhelyazkov, S., & Zsivanovits, G. (2021). Formulation and characterization of hydroxypropyl methylcellulose edible films containing grape seed oil. Macromolecular Symposia, 395(1), 2000278. Marudova, M., Zsivanovits, G., Viraneva, A., Gechev, B., & Rusinova-Videva, S. (2024). Rosehip Seed Oil-Incorporated Chitosan Films for Potential Fruit Packaging Applications. Applied Sciences, 14(17), 7669. Mohan, K., Ganesan, A. R., Ezhilarasi, P. N., Kondamareddy, K. K., Rajan, D. K., Sathishkumar, P., ... & Conterno, L. (2022). Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287, 119349. Momin, M. C., Jamir, A. R., Ankalagi, N., Henny, T., & Devi, O. B. (2021). Edible coatings in fruits and vegetables: A brief review. Pharma Innov. J, 10(7), 71-78. Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life, 16, 157–167. Nilsen‐Nygaard, J., Fernández, E. N., Radusin, T., Rotabakk, B. T., Sarfraz, J., Sharmin, N., ... & Pettersen, M. K. (2021). Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive reviews in food science and food safety, 20(2), 1333-1380. Nüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis – A critical technology overview. Green Chemistry, 6(3). Odetayo, T., Tesfay, S., & Ngobese, N. Z. (2022). Nanotechnology‐enhanced edible coating application on climacteric fruits. Food Science & Nutrition, 10(7), 2149-2167. Pérez-Guzmán, C. J., & Castro-Muñoz, R. (2020). A review of zein as a potential biopolymer for tissue engineering and nanotechnological applications. Processes, 8(11), 1376. Popescu, P. A., Palade, L. M., Nicolae, I. C., Popa, E. E., Miteluț, A. C., Drăghici, M. C., ... & Popa, M. E. (2022). Chitosan-based edible coatings containing essential oils to preserve the shelf life and postharvest quality parameters of organic strawberries and apples during cold storage. Foods, 11(21), 3317. Priya, K., Thirunavookarasu, N., & Chidanand, D. V. (2023). Recent advances in edible coating of food products and its legislations: A review. Journal of Agriculture and Food Research, 12, 100623. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in polymer science, 31(7), 603-632. Riva, S. C., Opara, U. O., & Fawole, O. A. (2020). Recent developments on postharvest application of edible coatings on stone fruit: A review. Scientia Horticulturae, 262, 109074. Sabeva, P., Zsivanovits, G., Parzhanova, A., Iserliyska, D., Momchilova, M., Zhelyazkov, S., Tranenska, P., & Iliev, A. (2024). Effect of chitosan/plant oils edible coatings on minimally processed peach quality during storage. Bulgarian Chemical Communications, 56(D1), 100-105. Shafiei, R., & Mostaghim, T. (2022). Improving shelf life of calf fillet in refrigerated storage using edible coating based on chitosan/natamycin containing Spirulina platensis and Chlorella vulgaris microalgae. Journal of Food Measurement and Characterization, 16(1), 145-161. Sharma, S., Rai, S., & Singh, S. (2024). Edible Coatings: A Sustainable Approach to Prolonging Fresh Produce Shelf Life. Science and innovation, 3(Special Issue 45), 580-583. Suryawanshi, N., Ayothiraman, S., & Eswari, J. S. (2020). Ultrasonication mode for the expedition of extraction process of chitin from the maritime shrimp shell waste. Indian Journal of Biochemistry and Biophysics, 57(4), 431-438. Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 10(1), 17. Tiwari, V. K., Verma, V. C., Khushboo, A., Kumar, K., Tsewang, T., Verma, A., ... & Acharya, S. (2022). Edible coating for postharvest management of fruits and vegetables. Pharm. Innov. J, 11, 970-978. Wei, L., Zhang, W., Yang, J., Pan, Y., Chen, H., & Zhang, Z. (2023). The application of deep eutectic solvents systems based on choline chloride in the preparation of biodegradable food packaging films. Trends in Food Science & Technology, 139, 104124. Weißpflog, J., Vehlow, D., Müller, M., Kohn, B., Scheler, U., Boye, S., & Schwarz, S. (2021). Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state–Insights by various complimentary methods. International Journal of Biological Macromolecules, 171, 242-261. Yadav, A., Kumar, N., Upadhyay, A., Pratibha, & Anurag, R. K. (2023). Edible packaging from fruit processing waste: A comprehensive review. Food Reviews International, 39(4), 2075-2106. Yadav, A., Kumar, N., Upadhyay, A., Sethi, S., & Singh, A. (2022). Edible coating as postharvest management strategy for shelf‐life extension of fresh tomato (Solanum lycopersicum L.): An overview. Journal of Food Science, 87(6), 2256-2290. Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., & Asghari, F. S. (2015). Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water. Journal of Supercritical Fluids, 104, 40-48. Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. International Journal of Biological Macromolecules, 69, 489-498. Zhang, H., & Neau, S. H. (2001). In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials, 22(12), 1653-1658. Zhelyazkov, S., Zsivanovits, G., Stamenova, E., & Marudova, M. (2022). Physical and Barrier Properties of Clove Essential Oil Loaded Potato Starch Edible Films. Biointerface Research in Applied Chemistry, 12(4), 4603-4612. Zsivanovits, G., Iserliyska, D., Momchilova, M., Sabeva, P., & Rankova, Z. (2021a). Analysis of chitosan treatment on white and black sweet cherry. Progress in Agricultural Engineering Sciences, 16(S2), 65-72. Zsivanovits, G., Zhelyazkov, S., Momchilova, M., Iserliyska, D., & Aleksandrova, D. (2021b). Influence of Edible Coating on Shelf Life and Quality of Sweet Cherry. Carpathian Journal of Food Science and Technology, 13(2), 93-105. Zsivanovits, G., Marudova, M., Viraneva, A., Gechev, B., Zhelyazkov, S., & Iliev, A. (2024). Characterization of Grapeseed Oil Loaded Chitosan Edible Films. Macromolecular Symposia, 413(4), 2300232.
|
|
| Дата на публикуване: 2025-03-27
Свали пълен текст